

OX4170P-HZ-1-12.800-3.3

ELECTRICAL SPECIFICATIONS

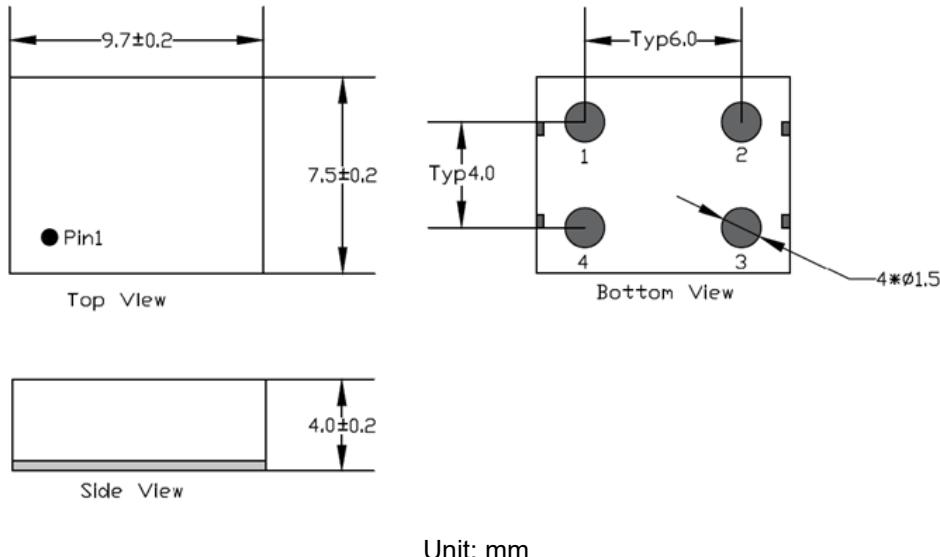
PARAMETER	SYMBOL	CONDITION	VALUE			UNIT
			Min.	Typ.	Max.	
Nominal Frequency	f_0	12.800				MHz
Supply Voltage	V_s	$V_s \pm 5\% @ 25^\circ C$	3.135	3.3	3.465	V
Input Current	P_s	Steady state, @ 25°C			230	mA
	$P_{s,w}$	During warm-up ,@ 25°C			600	mA
Warm-up Time	t_w	$V_s, Ta=+25^\circ C$, within ± 20 ppb 1 hour on			3	min
Initial Frequency Tolerance	$\Delta f/f_0$	$Ta=+25^\circ C$, after 15min power on ref. to nominal frequency	-1		+1	ppm
Frequency Stability vs. Temperature	$\Delta f/f_0 (T_a)$	$Ta= -20^\circ C \dots +70^\circ C$, measurement referenced to 25°C	-20		+20	ppb
Frequency Stability vs. Supply Voltage	$\Delta f/f_0 (\Delta V_{CC})$	$Ta=25^\circ C, Vs \pm 5\%$, load=15pF	-10		+10	ppb
Frequency Stability vs. Load Variation	$\Delta f/f_0 (\Delta l)$	$Ta=25^\circ C, Vs$, load=15pF $\pm 5\%$	-10		+10	ppb
Aging, after 30 days of operation	$\Delta f/\Delta t_d$	Daily	-2		+2	ppb
	$\Delta f/\Delta t_y$	First year	-1		+1	ppm
	$\Delta f/\Delta t_y$	10 years	-3		+3	ppm
Free-run Accuracy		All causes, 20 years life, reference to nominal frequency	-4.6		+4.6	ppm
Operating Temperature Range	T_a		-20		+70	°C
Storage Temperature Range	$T_{(stg)}$	Absolute max	-55		+105	°C

OX4170P-HZ-1-12.800-3.3

CMOS OUTPUT CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	Min.	Typ.	Max.	UNIT
Output Levels	VOL	V _s = 3.3V, load = 15pF			0.3	V
	VOH	V _s = 3.3V, load = 15pF	2.4			V
Duty Cycle	DC	load = 15pF	45		55	%
Load				15		pF
Rise / Fall Time		@25°C,10%~90%)			4	ns

PHASE NOISE


PARAMETER	SYMBOL	CONDITION	Min.	Typ.	Max.	UNIT
@1 Hz Offset	£ (Δf)				-70	dBc/Hz
@10 Hz Offset	£ (Δf)				-108	dBc/Hz
@100 Hz Offset	£ (Δf)				-138	dBc/Hz
@1 kHz Offset	£ (Δf)				-150	dBc/Hz
@10 kHz Offset	£ (Δf)				-155	dBc/Hz
@100 kHz Offset	£ (Δf)				-158	dBc/Hz
@1 MHz Offset	£ (Δf)				-163	dBc/Hz

ENVIRONMENTAL MECHANICAL CONDITIONS

Storage Temperature Range	-55°C to +105°C
Moisture Sensitivity Level	Level 3.
ESD Level	Human Body Model, class2: 2000V to 4000V; ANSI/ESDA/JEDEC JS-001-2010.
	Machine Model, class B: 200V to 400V; JEDEC JESD22-A115C.
Vibration	Test Condition: 0.75mm ;acceleration:10g;10Hz ~ 2000Hz, one cycle per 30 min, test 2 hour. (3 times for each 3 directions X ,Y , Z) .IEC 68-2-06 Test Fc.
Shock	100g ; 6ms ; half sine wave (3 times for each 3 directions X ,Y , Z),IEC 68-2-27 Test Ea/Severity 50A.

OX4170P-HZ-1-12.800-3.3

MECHANICAL DIMENSIONS AND PIN FUNCTIONING

PIN	SYMBOL	FUNCTION
1	N/C	No connect
2	GND	Ground
3	OUTPUT	Output
4	Vcc	Supply Voltage

	Signed	Date
Created	AR	January 26, 2026
Eng. approved	CP	January 26, 2026
REV A		

Raltron Electronics / RAMI Technology USA, LLC, including its affiliates, employees, agents and other persons acting on its behalf (collectively Raltron/RAMI Tech), disclaim any and all liability for any errors or inaccuracies contained in this data sheet. While Raltron/RAMI Tech has made every reasonable effort to ensure the accuracy of all product information, specifications and data contained herein, Raltron/RAMI Tech does not guarantee that the information is accurate, reliable or current. The product information is provided only for reference purposes only and is subject to change, correction or revision, at any time without notice. Raltron/RAMI Tech does not assume any liability arising out of an application or use of any product described herein and disclaims any warranties expressed or implied. The user of products in such applications shall assume all risks of such use and will agree to hold Raltron/RAMI Tech, harmless against all damages.

Copyright © 2016, Raltron Electronics / RAMI Technology USA, LLC. All rights reserved. No part of this document may be reproduced in any form without the prior written permission of Raltron Electronics / RAMI Technology USA, LLC.